
▪ 2D multiphase flow simulations using 
the MFIX solver (Table 1, Fig.4) to 
simulate coupled two-phase flows in 
a continuum framework.

▪ Solving mass, momentum and energy 
equations for fluid & solid phases

Fig.3: Pictures of the  ~15m step in the Las Lajas valley of Volcan de Fuego. The insert map shows the  June 3rd 2018 
PDC deposits from Volcán de Fuego by Charbonnier et al. (2024) with the topographic steps.

Table 1:  Input parameters used in the MFIX multiphase flow solver. Input temperature was chosen following Risica et al . 
(2022)
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2. Introduction

How do topographic steps impact 
the behaviour of concentrated PDCs? 

3. Methods

Stepping into the Flow: Deciphering the Influence of Topographic Steps on the Dynamics 
and Hazards of Pyroclastic Density Currents

Eric C. P. Breard1,2*, Josef Dufek2

1 University of Edinburgh, UK. 2 University of Oregon, USA.

1. Abstract

Fig.1: Concentrated and dilute pyroclastic density currents (Lube and Breard et al. 2020).
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• Topographic steps on steep to shallow slopes, as gentle as 5 degrees, can enhance the mo-
bility of the concentrated layer in BAFs due to (re)fluidization and do not contribute to 
noticeable cooling of the concentrated mixture.

• The processes of fragmentation-induced fluidization (FIF) and step-induced compaction 
(SIC) create a pore-pressure feedback mechanism (Fig.10) that extends the runout and in-
crease the hazard of concentrated PDCs.

• Ash elutriation, from the basal layer to the overriding ash-cloud surge, is particularly sig-
nificant on steep slopes and just after the PDCs move over a step, intensifying the density 
of the ash-cloud and consequently its potential hazard.

Fatalities from volcanic eruptions in the past decades have been 
largely related to the propagation of concentrated PDCs, such as 
block-and-ash flows, which form by gravitational collapse of volca-
nic domes or perched tephras located on steep slopes (i.e. Volcán de 
Fuego, ). 
Topographic steps exist on Volcán de Fuego on both steep (Fig.2) and 
shallow slopes (Fig.3) and may have impacted the BAFs produced on 
June 3 2018 (Charbonnier et. al., 2023, Naismith et al., 2019).

Concentrated Pyroclastic density currents (PDCs) achieve extensive 
runouts due to two main processes. First, fragmentation-induced flu-
idization (FIF) occurs, which is a fluidization process caused by the 
widening of the grain-size distribution. Second, these currents un-
dergo further compaction when they encounter changes in elevation 
or 'steps' in the landscape (step-induced compaction (SIC)). These 
topographical steps, found on a broad range of slopes on volcanoes 
(>30° to <5°) result from the erosion of lava flows. The fluidization of 
the concentrated basal layer and subsequent elutriation of ash that 
feeds the upper ash-cloud surge, consequently amplifies the flow's 
runout distance and increases the associated hazards.

~15m

4. Anatomy of a (Pyroclastic) Fall

Fig.4: MFIX simulation of a concentrated PDC moving across a 15 m high step (Hf/Hs~0.5) and boundary conditions 
used in the multiphase model.

5. Flow Fields and Kinematics

Distance (m) Distance (m) Distance (m)

Using multiphase flow simulations, we explore the granular and fluid 
dynamics of a concentrated hot granular mixture moving across a step 
in the topography (Fig.4). The chosen grain-size distribution makes 
the permeability equivalent to that of BAFs at Fuego. 

In the following section, we illustrate PDCs’ behaviour on various 
slopes and with different ratios of flow thickness to flow height 
(Figs.5-9).

Parameter Value 
Particle sizes 200×10-6 m (99 wt.%) and 16×10-6 m (1 wt.%) (added fine ash to visualize elutria�on) 
Solid density 2500 kg/m3 

Input temperature 
of gas and solid 320°C 

Specific heat of 
solid 1000 J/ Kg K 

Input concentration 0.6 
Maximum packing 

concentration 0.8 

Inlet velocity  10 m/s (parallel to slope) for gas and solid phases 
Friction coefficient 0.7 

Fluid property Air (compressible fluid) 
Mesh resolution Square cells of 0.5 m2 (with cutcells on boundaries) 

Flow thickness/step 
height (Hf/Hs) 2–0.2 

Solid Shear stress Kine�c Theory and Guo and Boyce (2021) fric�on model (using mu(I)-rheology) 
Gas-particle drag 

law Gidaspow 
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Fig.6: Depth- and time-averaged (over 10 s) flow velocity along the runout for MFIX simulations on three slopes with and 
without a topographic step with size ratio Hf/Hs ~ 1.
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Fig.2: Visualisation of the Upper 4 km of Las Lajas barranca at Volcán de Fuego prior and post 3/6/2018 eruption.
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Fig.5: Time-averaged (over 10 s) particle volumetric concentration (a) and pore-fluid pressure (b). MFIX simulations were 
run on three slopes with and without a topographic step with size ratio Hf/Hs ~ 1.

Fig.7: Particle volumetric concentration (a) and pore-fluid pressure (b). MFIX simulations were run on three slopes with and 
without a topographic step with size ratio Hf/Hs ~ 0.2-0.4.

Fig.8: Depth- and time-averaged (over 10 s) flow velocity along the runout for MFIX simulations on three slopes with 
and without a topographic step with size ratio Hf/Hs ~ 0.2-0.4.
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Fig.9: Time-average (during 10 s) temperature of the solid phase for simulations with a flow at inlet of 33 m (a, Hf/Hs ~ 1) and 
13 m (b, Hf/Hs ~ 0.2-0.4) of thickness. The grey color represents the colder ash elutriated. Note the temperature of the concentrat-
ed basal layer does not change with distaance due to negligible air entrainment.

6. Pore Pressure Feedback in BAFs

Fig.10: Pore pressure feedback operating in BAFs, which is driven by the step-induced compaction (SIC, Kelfoun and Gueugneau, 
2021 and this study) and the fragmentation-induced fluidization (FIF, Breard et al. 2023).
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